Potensi Penggunaan Metode In Vitro dalam Memperkirakan Pemeringkatan Indeks Glikemik In Vivo pada Beberapa Varietas Beras yang Dimasak

Authors

  • Aprinia Dian Nurhayati Institut Pertanian Bogor
  • Rimbawan Rimbawan Institut Pertanian Bogor
  • Faisal Anwar Institut Pertanian Bogor
  • Adi Winarto Institut Pertanian Bogor

DOI:

https://doi.org/10.21776/ub.ijhn.2019.006.02.6

Keywords:

glycemic index, in vitro, rice

Abstract

Abstrak

Tujuan penelitian ini adalah menguji metode in vitro yang paling potensial digunakan dalam skrining indeks glikemik (IG) pada nasi yang menurut literatur memiliki IG berbeda (rendah, sedang dan tinggi). Metode Englyst et al. (2003) dan Argyri et al. (2016) menjadi metode in vitro terpilih yang diuji validitasnya untuk mengetahui kemampuan keduanya dalam menggolongkan pangan sesuai hasil pengujian IG in vivo. Sebanyak enam varietas beras dimasak menggunakan rice cooker kemudian nasi diuji kadar proksimat (protein, lemak, air, abu, karbohidrat), serat pangan total, amilosa, amilopektin dan pati. Sebanyak 20 orang yang memenuhi kriteria inklusi dibagi dalam dua kelompok sebanding untuk diukur kadar gula darah 2 jam setelah mengonsumsi makanan. Nasi hitam Cirebon, Cisokan dan Inpara 5 memiliki IG sedang, sedangkan nasi Inpari 24, Sintanur dan ketan Grendel tergolong IG tinggi. Kadar glukosa nasi pada metode Englyst et al. (2003) menit ke-20 dan Argyri et al. (2016) menit ke-120 apabila dibuat pemeringkatan terendah hingga tertinggi menunjukkan urutan peringkat yang sesuai dengan urutan nilai IG in vivo. Kesimpulan penelitian ini adalah metode Argyri et al. (2016) menunjukkan hasil yang lebih mendekati nilai IG in vivo dan prosedur pengukuran yang dilakukan lebih mirip dengan proses pencernaan pada tubuh manusia, sehingga metode ini lebih direkomendasikan dalam memperkirakan pengkategorian IG in vivo pada sampel berupa nasi (r2=0,461, p<0,01).

Kata kunci: indeks glikemik, in vitro, nasi

 

Abstract

 The aim of this study was to test the most potential in vitro methods to used in screening the glycemic index (GI) of rice which according to the literature had different GI category (low, medium, high). Englyst et al. (2003) and Argyri et al. (2016) became the selected in vitro method that tested their validity by determine their ability to classify food according to the results of in vivo GI. Six rice varieties were cooked using a rice cooker then tested for proximate analysis (protein, fat, water, ash, carbohydrate), total dietary fiber, amylose, amylopectin and starch. A total of 20 subjects who met the inclusion criteria were divided into two comparable groups to measure their blood glucose levels for 2 hours after consuming test food. Cirebon black rice, Cisokan and Inpara 5 have moderate GI, while Inpari 24, Sintanur and Grendel glutinous rice were classified as high GI. Glucose levels of rice as measured by Englyst et al. (2003) at 20th minute and Argyri et al. (2016) at 120th minute has a comparable rank with in vivo GI. The conclusion of this study is method by Argyri et al. (2016) showed results that were closer to the in vivo GI and the measurement procedure was more similar to the digestive process in the human body, thus its became more recommended method to estimating the categorization of in vivo GI in rice samples (r2=0,461, p<0,01).

Keywords: glycemic index, in vitro, rice


References

  • DAFTAR RUJUKAN
  • Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS. Glycemic Index Methodology. Nutr Res Rev. 2005; 18 (1):145-71.
  • Food and Agriculture Organization (FAO). Carbohydrates in human nutrition: Report of A Joint FAO/WHO Expert Consultation. 66. Rome: FAO; 1998. 1-40.
  • Larsson SC, Giovannucci EL, Wolk A. Prospective study of glycemic index load, glycemic index, and carbohydrate intake in relation to risk of biliary tract cancer. Am J Gastroenterol. 2016; 111 (6): 891-96.
  • Kaviani M, Chilibeck PD, Jochim J, Gordon J, Zello GA. The glycemic index of sport nutrition bars affects performance and metabolism during cycling and next-day recovery. Journal of Human Kinetics. 2019; 66:69-79.
  • Hettiaratchi UPK, Ekanayake S, Welihinda J. Prediction of glycaemic indices (GI) of meals by starch hydrolysis indices. Int Food Res J. 2012; 19 (3): 1153-59.
  • Woolnough JW, Monro JA, Brennan CS, Bird AR. Simulating human carbohydrate digestion dari metode in vitro: A review of methods and the need for standardization. Int J Food Sci Technol. 2008; 43 (12): 2245-56.
  • Snow P dan O’Dea K. Factors affecting the rate of hydrolysis of starch in food. Am J Clin Nutr. 1981; 34 (12): 2721-27.
  • Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index. Nutrition Research. 1997; 17 (3): 427-37.
  • Englyst KN, Englyst HN, Hudson GJ, Cole TJ, Cummings JH. Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am J Clin Nutr. 1999; 69 (3): 448-54.
  • Englyst KN, Hudson GJ, Englyst HN. Starch analysis in food. Encyclopedia of analytical chemistry. 2000; 1 (1): 4246-62.
  • Englyst KN, Vinoy S, Englyst HN, Lang V. Glycemic index of cereal products explained by their content of rapidly and slowly available glucose. Br J Nutr. 2003; 89 (3): 29-339.
  • Frei MP, Siddhuraju K, Becker. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry. 2003; 83 (3): 395-402.
  • Argyri K, Anthnasatou A, Binga M, Kapsokefalou M. The potential of an in vitro digestion method for predicting glycemic response of foods and meals. Nutrients. 2016; 8 (4): 209-20.
  • Dona AC, Pages G, Gilbert RG, Kuchel PW. Digestion of starch: in vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release. Carbohydr Polym. 2010; 80 (3): 599-617.
  • Araya H, Contreras P, Alvina M, Vera G, Pak N. A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. Eur J Clin Nutr. 2002; 56 (8): 735-39.
  • Flint A, Moller BK, Raben A, Pedersen D, Tetens I, Holst JJ, Astrup A. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. B J Nutr. 2004; 91 (6): 979-89.
  • Garsetti M, Vinoy S, Lang V, Holt S, Loyer S, Brand-Miller JC. The glycemic and insulinemic index of plain sweet biscuits: relationship to in vitro starch digestibility. Journal of the American College of Nutrition. 2005; 24 (6): 441-47.
  • Chung HJ, Shin DH, Lim ST. In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International. 2008; 41(6):579–85.
  • Al-Mssallem MQ, Hampton SM, Frost GS, Brown JE. A study of Hassawi rice (Oryza sativa L.) in terms of its carbohydrate hydrolysis (in vitro) and glycaemic and insulinaemic indices (in vivo). Eur J Clin Nutr. 2011; 65 (5): 627-634.
  • Meynier A, Goux A, Atkinson F, Brack O, Vinoy S. Postprandial glycaemic response: how is it influenced by characterictics of cereal products?. Br J Nutr. 2015; 113 (12): 1931-39.
  • Fujiwara N, Hall C, Jenkins AL. Development of low glycemic index (GI) foods by incorporating pulse ingredients into cereal-based products: use of in vitro screening and in vivo methodologies. Cereal Chem J. 2016; 94 (1): 110-16.
  • Shumoy H, Raes K. In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera. Food Chem. 2017; 229 (1): 381-87.
  • Akerberg AKE, Liljeberg HGM, Grandfelt YE, Drews AW, Bjork IME. An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr. 1998; 128 (3): 651-660.
  • Kubo M, Purevdorj M. The future of rice production and consumption. J Food Dist Res. 2004; 35(1): 129-142.
  • Badan Ketahanan Pangan Kementrian Pertanian RI. Roadmap
  • diversifikasi pangan 2011-2015. Kementrian Pertanian. 2012.
  • Seah JYH, Koh WP, Yuan JM, Dam RMV. Rice intake and risk of type 2 diabetes: the Singapore Chinese Health Study. Eur J Nutr. 2018.
  • Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review.. BMJ. 2012; 344:1-9.
  • Kaur B, Ranawana V, Henry J. The glycemic index of rice and rice products: a review, and table of GI values. Critical Reviews on Food Science and Nutrition. 2016; 56: 215-36.
  • Magnusson B, Ornemark U. Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. Edisi 2. 2014.
  • ISO 26642:2010. Food products – determination of the glycemic index (GI) and recommendation for food classification. British Standard. Switzerland. ISBN 978 0 580 56630 1. 2010.
  • Hidayati N, Aisuwarya R, Putri RE. Sistem control kestabilan suhu penghangat nasi menggunakan metode fuzzy logic. Jurnal UMJ. 2017.
  • Wolever TMS, Brand-Miller JC, Abernethy J. Measuring the glycemic index of foods: interlaboratory study. Am J Clin Nutr. 2008; 87(suppl): 247S-57S.
  • Brand-Miller JC, Stockmann K, Atkinson F, Petocz P, Denyer G. Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: analysis of a database of more than 1000 foods. Am J Clin Nutr. 2009; 89: 97-105.
  • Henry CJK dan Thondre PS. The Glycaemic Index: Concept, Recent Developments and Its Impact on Diabetes and Obesity. Smith Gordon. 2011; 15 (2): 154-75.
  • Subarna, Suroso, Budijanto S, Sutrisno. Pengembangan metode menanak optimum untuk beras varietas Sintanur, IR 64 dan Ciherang. Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian. 2005; 1: 376-86.
  • Pudjihastuti I. Pengembangan proses inovatif kombinasi reaksi hidrolisis asam dan reaksi photokimia UV untuk produksi pari termodifikasi dari tapioka. [tesis]. Semarang: Universitas Diponegoro; 2010.
  • Herawati H. Potensi pengembangan produk pati tahan cerna sebagai pangan fungsional. Jurnal Litbang Pertanian. 2011; 30(1): 31-9.
  • Juliano BO. Rice in human nutrition. Collaboration IRRI and FAO. Rome.
  • Brody T. Nutritional Biochemistry 2nd Ed. Academic Press. 1999. ISBN 0-12-134836-9.
  • Singh J, Dartois A, Kaur L. Starch digestibility in food matrix: a review. Trends in Food Science & Technology. 2010; 21(4):168-180.
  • Hernawan E, Meylani V. Analisis karakteristik fisikokimia beras putih, beras merah, dan beras hitam (Oryza sativa L., Oryza nivara dan Oryza sativa L. indica). Jurnal Kesehatan Bakti Tunas Husada. 2016; 15 (1): 79-91.
  • Sundari D, Almasyhuri, Lamid A. Pengaruh proses pemasakan terhadap komposisi zat gizi bahan pangan sumber protein. Media Litbangkes. 2015; 25 (4): 235-42.
  • Indrasari SD, Purwani EY, Wibowo P, Jumali. Nilai indeks glikemik beras beberapa varietas padi. Sukamandi (ID): Balai Besar Penelitian Tanaman Padi. 2008; 27(3):127-134.
  • Ikhwani, Wardhana P, Priatmodjo B, Purwani EY. Pengembangan varietas padi karakteristik khusus di lahan sawah irigasi [Internet]. Balitbangtan Kementan. [diunduh 2018 Januari 20]. 2017; Tersedia pada: http://pangan. litbang.pertanian.go.id/files/seminar/2017/Seminar%20Puslitbang%20Ikhwani%2009022017.pdf
  • Jones JM. Glycemic response definitions. AACC International. 2007; 27 (2): 54-55.
  • Septianingrum E, Liyanan, Kusbiantoro B. Review indeks glikemik beras: faktor-faktor yang mempengaruhi dan keterkaitannya terhadap kesehatan tubuh. Jurnal Kesehatan. 2016; 9: 1-9.
  • Ali A, Al-Kindi YSM, Al-Said F. Chemical Composition and glycemic index of three varieties of Omani dates. Int J Food Sci Nutr. 2008. 60(S4): 51-62.
  • Widowati S, Santosa BAS, Astawan M, Akhyar. Penurunan Indeks Glikemik Berbagai Varietas Beras Melalui Proses Pratanak. J Pascapanen. 2009; 6: 1-9.
  • Auliya SS. Sifat fisikokimia serta penurunan indeks glikemik beras hitam dan beras merah pratanak. [skripsi]. Bogor: Institut Pertanian Bogor; 2017.
  • Wahab MI, Satoto, Rahmat R, Guswara A, Suharma. Deskripsi Varietas Unggul Baru Padi. Badan Penelitian dan Pengembangan Pertanian Kementrian Pertanian. 2017.
  • Suprihatno B, Daradjat AA, Satoto, Baehaki, Suprihanto, Setyono A, Indrasari SD, Wardana IP, Sembiring H. Deskripsi Varietas Padi. Subang: Balai Besar Penelitian Tanaman Padi. 2010; 4.
  • Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr. 2009; 49: 327-60.
  • Al-Mssallem MQ, Frost GS, Brown JE. The metabolic effects of two meals with the same glycaemic index but different slowly available glucose parameters determined in vitro: a pilot study. Ann Nutr Disord & Ther. 2014; 1(1): 5.
  • Englyst KN, Englyst HN. Carbohydrate bioavaibility. BJN. 2005; 94(1):1-11.
  • Widayati CSW. Komparasi beberapa metode estimasi kesalahan pengukuran. Jurnal Penelitian dan Evaluasi Pendidikan. 2009; 13(2): 182-197.


Downloads


Published

2019-12-31

How to Cite

1.
Nurhayati AD, Rimbawan R, Anwar F, Winarto A. Potensi Penggunaan Metode In Vitro dalam Memperkirakan Pemeringkatan Indeks Glikemik In Vivo pada Beberapa Varietas Beras yang Dimasak. IJHN [Internet]. 2019 Dec. 31 [cited 2024 Apr. 23];6(2):119-38. Available from: https://ijhn.ub.ac.id/index.php/ijhn/article/view/332

Issue


Section

Articles