Potensi Whey Kefir Susu Kambing Sebagai Anti-Obesitas Melalui Penghambatan Sintesis Lipid dan Aktivitas Phosphoenolpyruvate Carboxykinase (PEPCK) pada Sel Model Adiposit 3T3-L1
DOI:
https://doi.org/10.21776/ub.ijhn.2022.009.02.9Keywords:
aktivitas enzim, susu ferementasi, kolesterol, trigliseridaAbstract
Obesitas menjadi salah satu penyebab utama sindrom metabolik dislipidemia, yang dapat sebagai komorbid berbagai penyakit. Penggunaan obat-obatan untuk mengurangi obesitas memiliki akibat yang merugikan, oleh karena itu dikembangkan produk komplementer dari susu fermentasi sebagai strategi non-farmakologis untuk pengelolaan dislipidemia. Pemecahan masalah obesitas dapat dilakukan melalui pendekatan adipogenesis pada sel model adiposit 3T3-L1. Tujuan penelitian ini adalah menganalisis pemberian whey-KSK terhadap TG (Total Trigliserida), TC (Total Kolesterol) dan aktivitas PEPCK (Phosphoenol pyruvate Carboxykinase) sel adiposit 3T3-L1. Metode penelitian adalah percobaan pemberian dosis whey-KSK yang berbeda yaitu P1 (25mg/ml), P2 (50 mg/ml), P3 (75 mg/ml), P4 (100 mg/ml), dan kelompok KN (kontrol negatif) dan KP (kontrol positif) pada adiposit 3T3-L1, dengan empat kali ulangan. Hasil penelitian menunjukkan whey-KSK 25 – 100 µg/mL dapat menurunkan TG sebesar 35,39 – 55,32%, menurunkan TC sebesar 30,46-62,12%, menurunkan aktivitas PEPCK sebesar 27,10-82,52% dan menurunkan aktivitas spesifik PEPCK sebesar 33,06-63,34%. Kesimpulan whey-KSK dapat menghambat adipogenesis sel adiposit 3T3-L1 dan berpotensi sebagai antiobesitas.
References
- Vaamonde, JG and Álvarez-Món, MA, “Obesity and overweight,” Med., vol. 13, no. 14, pp. 767–776, 2020, doi: 10.1016/j.med.2020.07.010.
- Ramadhani, ET and Sulistyorini, Y.,“The Relationship between Obesity and Hypertension in East Java Province in 2015-2016,” J. Berk. Epidemiol., vol. 6, no. 1, pp. 35–42, 2018, doi: DOI: 10.20473/jbe.v6i12018. 35-42.
- Lee, JY., Lee, YR., Kim,HR., Myong, JP., and Kang,MY. “Trends in Obesity Prevalence by Occupation Based on Korean National Health and Nutrition Examination Survey From 1998 to 2015,” Saf. Health Work, vol. 11, no. 1, pp. 97–102, 2020, doi: 10.1016/j.shaw.2019.08.003.
- Pitayatienanan P., et al., “Economic costs of obesity in Thailand: A retrospective cost-of-illness study,” BMC Health Serv. Res., vol. 14, no. 1, pp. 1–7, 2014, doi: 10.1186/1472-6963-14-146.
- Haslam, DW, and James, WPT., “Obesity,” Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005, doi: 10.1016/S0140-6736(05)67483-1.
- Hocking, S., Dear, A. and Cowley, MA., “Current and emerging pharmacotherapies for obesity in Australia,” Obes. Res. Clin. Pract., vol. 11, no. 5, pp. 501–521, 2017, doi: 10.1016/j.orcp.2017.07.002.
- Gaio, V., et al., “Prevalence of overweight and obesity in Portugal: Results from the First Portuguese Health Examination Survey (INSEF 2015),” Obes. Res. Clin. Pract., vol. 12, no. 1, pp. 40–50, 2018, doi: 10.1016/j.orcp.2017.08.002.
- Basterra-Gortari, FJ., Bes-Rastrollo, M., Ruiz-Canela,M., Gea, A., Sayón-Orea,C. and Martínez-González, MA., “Trends of obesity prevalence among Spanish adults with diabetes, 1987–2012,” Med. Clínica (English Ed., vol. 152, no. 5, pp. 181–184, 2019, doi: 10.1016/j.medcle.2018.03.041.
- Anyanwagu, U., Mamza, J., Mehta, R., Donnelly,R., and Idris.I, “Cardiovascular events and all-cause mortality with insulin versus glucagon-like peptide-1 analogue in type 2 diabetes,” Heart, vol. 102, no. 19, pp. 1581–1587, 2016, doi: 10.1136/heartjnl-2015-309164.
- Mukherjee, R., Kim, SW., Park, T., Choi, MS and Yun,JW. “Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats,” Int. J. Obes., vol. 39, no. 9, pp. 1349–1358, 2015, doi: 10.1038/ijo.2015.74.
- Ferro-Luzzi, A., and Martino, L., “Obesity and physical activity,” CIBA Found. Symp., no. 201, pp. 207–227, 1996, doi: 10.7570/jomes.2017.26.1.15.
- Repas, T. “Obesity and dyslipidemia.,” S. D. Med., vol. 64, no. 7, 2011, doi: 10.5005/jp/books/12963_81.
- Bermúdez-Cardona, J. and Velásquez-Rodríguez,C. “Profile of free fatty acids and fractions of phospholipids, cholesterol esters and triglycerides in serum of obese youth with and without metabolic syndrome,” Nutrients, vol. 8, no. 2, 2016, doi: 10.3390/nu8020054.
- Franckhauser,S., Muñoz, S., Elias, I., Ferre,T., and Bosch, F., “Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity,” Diabetes, vol. 55, no. 2, pp. 273–280, 2006, doi: 10.2337/diabetes.55.02.06.db05-0482.
- Morriso, S. and McGee, L.S. “3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages,” Adipocyte, vol. 4, no. 4, pp. 295–302, 2015, doi: 10.1080/21623945.2015.1040612.
- Zebisch, K., Voigt, V., Wabitsch,M., and Brandsch, M. “Protocol for effective differentiation of 3T3-L1 cells to adipocytes,” Anal. Biochem., vol. 425, no. 1, pp. 88–90, 2012, doi: 10.1016/j.ab.2012.03.005.
- Kim, SC., Kim, YH., Son, S.W. Moon, EY., Pyo, S. and Um, SH. “Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells,” Biochem. Biophys. Res. Commun., vol. 467, no. 4, pp. 638–644, 2015, doi: 10.1016/j.bbrc.2015.10.094.
- Li, Y. et al., “Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells,” Lipids Health Dis., vol. 16, no. 1, pp. 1–10, 2017, doi: 10.1186/s12944-017-0574-7.
- Salinas-Rubio, D. et al., “Interaction between leucine and palmitate catabolism in 3T3-L1 adipocytes and primary adipocytes from control and obese rats,” J. Nutr. Biochem., vol. 59, pp. 29–36, 2018, doi: 10.1016/j.jnutbio.2018.05.011.
- Ribeiro, LC., et al., “Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity,” Mol. Nutr. Food Res., vol. 52, no. 11, pp. 1365–1371, 2008, doi: 10.1002/mnfr.200700415.
- Frengova,GI.,Simova, ED., Beshkova, DM., and Simov, ZI. “Exopolysaccharides produced by lactic acid bacteria of kefir grains,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 57, no. 9–10, pp. 805–810, 2002, doi: 10.1515/znc-2002-9-1009.
- Radiati, LE., Jaya,F., and Oktavia, H. “Effect of Carrot-Juice on Exopolisaccharides and β-D Galactosidase Activity in Yogurt,” Anim. Prod., vol. 18, no. 3, pp. 173–179, 2016.
- Garrote, GL., Abraham, AG and De Antoni GL, “Chemical and microbiological characterisation of kefir grains,” J. Dairy Res., vol. 68, no. 4, pp. 639–652, 2001, doi: 10.1017/S0022029901005210.
- de Paiv. IM., et al., “Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications,” LWT - Food Sci. Technol., vol. 72, no. June, pp. 390–398, 2016, doi: 10.1016/j.lwt.2016.05.010.
- Medrano, M. Racedo, SM., Rolny, IS., Abraham, AG and Pérez, PF “Oral administration of kefiran induces changes in the balance of immune cells in a murine model,” J. Agric. Food Chem., vol. 59, no. 10, pp. 5299–5304, 2011, doi: 10.1021/jf1049968.
- Ibrahim, HR., Ahmed, AS and Miyata, T., “Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk,” J. Adv. Res., vol. 8, no. 1, pp. 63–71, 2017, doi: 10.1016/j.jare.2016.12.002.
- Ahtesh, FB Stojanovska, L., and Apostolopoulos,V. “Maturitas Anti-hypertensive peptides released from milk proteins by probiotics,” Maturitas, vol. 115, no. June, pp. 103–109, 2018, doi: 10.1016/j.maturitas.2018.06.016.
- Bourrie, BCT., Cotter, PD., and Willing, BP.“Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity,” J. Funct. Foods, vol. 46, no. October 2017, pp. 29–37, 2018, doi: 10.1016/j.jff.2018.04.039.
- Matsuoka, H., Shima, A., Kuramoto, D., Kikumoto, D.,Matsui, T., and . Michihara, A “Phosphoenolpyruvate carboxykinase, a key enzyme that controls blood glucose, is a target of retinoic acid receptor-related orphan receptor α,” PLoS One, vol. 10, no. 9, pp. 1–11, 2015, doi: 10.1371/journal.pone.0137955.
- Ötles, S. and Ozgoz, S.“Health effects of dietary fiber,” Acta Sci. Pol. Technol. Aliment., vol. 13, no. 2, pp. 191–202, 2014, doi: 10.17306/J.AFS.2014.2.8.
- Pothuraju R, et al., “Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice,” Benef. Microbes, vol. 7, no. 3, pp. 375–385, 2016, doi: 10.3920/BM2015.0083.
- Kavadi, PK.,Pothuraju,R., Chagalamarri,J., Bhakri,G., Mallepogu, A. and Sharma, RK. “Dietary incorporation of whey protein isolate and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice,” J. Intercult. Ethnopharmacol., vol. 6, no. 3, pp. 326–332, 2017, doi: 10.5455/jice.20170526091235.
- Kassotis, CD., . Masse, L., Kim, S., Schlezinger, JJ., Webster, TF., and . Stapleton, HM. “Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling,” Sci. Rep., vol. 7, no. September 2016, pp. 1–17, 2017, doi: 10.1038/srep42104.
- Kusriningrum, R. Metodologi Penelitian, no. 101. Surabaya: Airlangga University Press, 2008.
- Torous VF., et al., “Oil red O staining for lipid-laden macrophage index of bronchoalveolar lavage: interobserver agreement and challenges to interpretation,” J. Am. Soc. Cytopathol., vol. 9, no. 6, pp. 563–569, 2020, doi: 10.1016/j.jasc.2020.05.010.
- Incorporation, B “Triglyceride Quantification Colorimetric / Fluorometric Kit,” Biovision, no. 408, pp. 1800–1801, 2019.
- Incorporation, B. “Phosphoenolpyruvate Carboxykinase Activity Assay Kit ( Colorimetric ),” Biovision, no. 408, pp. 1800–1801, 2017.
- Tung, YT., Chen, HL., Wu, HS., Ho, MH., Chong, KY., and Chen, CM. “Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation,” Mol. Nutr. Food Res., vol. 62, no. 3, pp. 1–9, 2018, doi: 10.1002/mnfr.201700505.
- Pražnikar, ZJ., Kenig, S. Vardjan, T. . Bizjak, MC., and Petelin, A. “Effects of kefir or milk supplementation on zonulin in overweight subjects,” J. Dairy Sci., vol. 103, no. 5, pp. 3961–3970, 2020, doi: 10.3168/jds.2019-17696.
- Zhang, X., Yang, S. Chen, J and Su, Z. “Unraveling the regulation of hepatic gluconeogenesis,” Front. Endocrinol. (Lausanne)., vol. 10, no. JAN, pp. 1–17, 2019, doi: 10.3389/fendo.2018.00802.
- Bengoa,AA., Iraporda, C., . Garrote, GL and Abraham, AG.“Kefir micro-organisms: their role in grain assembly and health properties of fermented milk,” J. Appl. Microbiol., vol. 126, no. 3, pp. 686–700, 2019, doi: 10.1111/jam.14107.
- Ilıkkan, ÖK. and Bağdat, EŞ. “Comparison of bacterial and fungal biodiversity of Turkish kefir grains with high-throughput metagenomic analysis,” Lwt, vol. 152, no. August, 2021, doi: 10.1016/j.lwt.2021.112375.
- Tunay, RT.and Kök Taş, T.,“Verticle transmission of unique bacterial strains from mother to infant via consuming natural kefir,” Int. Dairy J., vol. 126, 2022, doi: 10.1016/j.idairyj.2021.105251.
- Chen, L., Hui, Y., Gao, T., Shu, G. and Chen, H. “Function and characterization of novel antioxidant peptides by fermentation with a wild Lactobacillus plantarum 60,” LWT, vol. 135, no. August 2020, p. 110162, 2021, doi: 10.1016/j.lwt.2020.110162.
- Cheng, CF., et al., “Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3,” Commun. Biol., vol. 2, no. 1, pp. 1–18, 2019, doi: 10.1038/s42003-019-0624-y.
- Radiati, L.E., Purnomo, H., Widiastuty E., “Improvement antimicrobial antioxidant of Goat Milk Kefir.” Improvement Smallholder and Industry Livestock Production, Bangkok Thailand, p. 146, 2012.
- Ebner,J. A. Aşçi Arslan, M. Fedorova, R. Hoffmann, A. Küçükçetin, and M. Pischetsrieder, “Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains,” J. Proteomics, vol. 117, pp. 41–57, 2015, doi: 10.1016/j.jprot.2015.01.005.
- Mudgil, P., Kamal, H., Yuen, GC. and Maqsood, S. “Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates,” Food Chem., vol. 259, no. March, pp. 46–54, 2018, doi: 10.1016/j.foodchem.2018.03.082.
- Ali, AT., Hochfeld, WE., Myburgh, R. and Pepper,MS. “Adipocyte and adipogenesis,” Eur. J. Cell Biol., vol. 92, no. 6–7, pp. 229–236, 2013, doi: 10.1016/j.ejcb.2013.06.001.
- Sethi JK. and Vidal-Puig, AJ. “Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation,” J. Lipid Res., vol. 48, no. 6, pp. 1253–1262, 2007, doi: 10.1194/jlr.R700005-JLR200.
- Gregoire, FM., Smas, CM. and Sul, HS. “Understanding adipocyte differentiation,” Physiol. Rev., vol. 78, no. 3, pp. 783–809, 1998, doi: 10.1152/physrev.1998.78.3.783.
- Ratnawati, R., Satuman, S. and Endang Hernowati, T. “Respon Proliferasi, Diferensiasi dan Ekspresi C/EBPa Akibat Paparan Quercetin pada Kultur Preadiposit Tikus (Rattus Norvegicus) Strain Wistar Secara In Vitro,” Res. J. Life Sci., vol. 2, no. 1, pp. 23–33, 2015, doi: 10.21776/ub.rjls.2015.002.01.4.
- Choi, JW., Kang, HW., Lim,WC., Kim,MK,. Lee, IY and Cho, HY,“Kefir prevented excess fat accumulation in diet-induced obese mice,” Biosci. Biotechnol. Biochem., vol. 81, no. 5, pp. 958–965, 2017, doi: 10.1080/09168451.2016.1258984.
- Reichert M. and Eick,D. “Analysis of cell cycle arrest in adipocyte differentiation,” Oncogene, vol. 18, no. 2, pp. 459–466, 1999, doi: 10.1038/sj.onc.1202308.
- Ho, JN. Choi, JW., Lim, WC., Kim, MK., Lee, IY and Cho, HY., “Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression,” J. Sci. Food Agric., vol. 93, no. 3, pp. 485–490, 2013, doi: 10.1002/jsfa.5792.
- Chen, MJ., Liu, JR., Lin,CW. and Yeh,YT. “Study of the microbial and chemical properties of goat milk kefir produced by inoculation with Taiwanese kefir grains,” Asian-Australasian J. Anim. Sci., vol. 18, no. 5, pp. 711–715, 2005, doi: 10.5713/ajas.2005.711.
- Quispe-Tintaya,W. HHS Public Access,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2017, doi: 10.1097/MED.0000000000000184.Leptin.
- Feingold, K. and Grunfeld,C. “Introduction to Lipids and Lipoproteins - Endotext - NCBI Bookshelf,” NCBI Bookshelf. p. 18, 2015.
- Lee,HS., Lee, HJ., and Suh, HJ.“Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast,” Nutr. Res., vol. 31, no. 12, pp. 937–943, 2011, doi: 10.1016/j.nutres.2011.09.009.
- Son, MJ., et al., “GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1α during adipose tissue browning,” Metabolism., vol. 109, p. 154280, 2020, doi: 10.1016/j.metabol.2020.154280.
- Lee. EJ., et al., “Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice,” Int. J. Biol. Macromol., vol. 104, pp. 281–286, 2017, doi: 10.1016/j.ijbiomac.2017.05.151.
- Yin,H., Yang,D., Liu, J., Ding, J., and Cui, D. “ilnensriti trelcilnensrititr,” pp. 1–6, 2021.
- Martinez-Villaluenga,C., Bringe, NA., Berhow,MA. and De Mejia, EG. “Beta;-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro,” J. Agric. Food Chem., vol. 56, no. 22, pp. 10533–10543, 2008, doi: 10.1021/jf802216b.
- Xia, EQ.,Zhu, SS.,He, MJ., Luo, F., Fu, and ZC., Bin Zou, T. “Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect,” Mar. Drugs, vol. 15, no. 4, 2017, doi: 10.3390/md15040088.
- Murphy, KG., Dhillo,WS., and Bloom, SR. “Gut peptides in the regulation of food intake and energy homeostasis,” Endocr. Rev., vol. 27, no. 7, pp. 719–727, 2006, doi: 10.1210/er.2006-0028.
- Moghadam, AA., Moran, TH and . Dailey, MJ., “Alterations in circadian and meal-induced gut peptide levels in lean and obese rats,” Exp. Biol. Med., vol. 242, no. 18, pp. 1786–1794, 2017, doi: 10.1177/1535370217732041.
- de Carvalho Marchesin, J., et al., “A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice,” J. Funct. Foods, vol. 48, no. July, pp. 302–313, 2018, doi: 10.1016/j.jff.2018.07.010.
- Fakruddin, M. . Hossain, MN., and Ahmed, MM. “Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic,” BMC Complement. Altern. Med., vol. 17, no. 1, Jan. 2017, doi: 10.1186/s12906-017-1591-9.
- Mc Auley, MT., “Effects of obesity on cholesterol metabolism and its implications for healthy ageing,” Nutr. Res. Rev., vol. 33, no. 1, pp. 121–133, 2020, doi: 10.1017/S0954422419000258.
- Wang H and Eckel, RH “Lipoprotein lipase: From gene to obesity,” Am. J. Physiol. - Endocrinol. Metab., vol. 297, no. 2, 2009, doi: 10.1152/ajpendo.90920.2008.
- Yasamin Fathi, SFP., MSc , Naeimeh Ghodrati, MSc, Mohammad-Javad Zibaeenezhad MDc, “Kefir drink causes a significant yet similar improvement in serum lipid profile, compared with low-fat milk, in a dairy-rich diet in overweight or obese premenopausal women: A randomized controlled trial,” J. Clin. Lipidol., vol. 11, no. 1, pp. 136–146, 2017.
- Soerensen, KV., Thorning, TK., Astrup, A., Kristensen,M., and . Lorenzen, JK. “Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men,” Am. J. Clin. Nutr., vol. 99, no. 5, pp. 984–991, 2014, doi: 10.3945/ajcn.113.077735.
- El-Sayed, MI., Awad S. , Wahba A. , El Attar, A. , Yousef, MI and Zedan ,M “In Vivo Anti-diabetic and Biological Activities of Milk Protein and Milk Protein Hydrolyaste,” Adv. Dairy Res., vol. 4, no. 2, 2016, doi: 10.4172/2329-888x.1000154.
- Santanna, AF., et al., “Chronic administration of the soluble, nonbacterial fraction of kefir attenuates lipid deposition in LDLr−/− mice,” Nutrition, vol. 35, pp. 100–105, 2017, doi: 10.1016/j.nut.2016.11.001.
- Brasil, GA., et al., “The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity,” Nutrition, vol. 51–52, pp. 66–72, 2018, doi: 10.1016/j.nut.2017.12.007.
- Maki, KC., et al., “Sugar-sweetened product consumption alters glucose homeostasis compared with dairy product consumption in men and women at risk of type 2 diabetes mellitus,” J. Nutr., vol. 145, no. 3, pp. 459–466, 2015, doi: 10.3945/jn.114.204503.
- Ostadrahimi, A., et al., “Effect of probiotic fermented milk (Kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial,” Iran. J. Public Health, vol. 44, no. 2, pp. 228–237, 2015.
- Lacroix. IME. and Li-Chan, ECY. “Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes,” Mol. Nutr. Food Res., vol. 58, no. 1, pp. 61–78, 2014, doi: 10.1002/mnfr.201300223.
- Arora, T. Singh, S. and Sharma, RK. “Probiotics: Interaction with gut microbiome and antiobesity potential,” Nutrition, vol. 29, no. 4, pp. 591–596, 2013, doi: 10.1016/j.nut.2012.07.017.
- Foley, MH., et al., “Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization,” Proc. Natl. Acad. Sci. U. S. A., vol. 118, no. 6, 2021, doi: 10.1073/pnas.2017709118.
- Stewart, LK., et al., “Milk and kefir maintain aspects of health during doxorubicin treatment in rats,” J. Dairy Sci., vol. 102, no. 3, pp. 1910–1917, 2019, doi: 10.3168/jds.2018-15576.
- Zhang, L. and Falla, TJ., “Cosmeceuticals and peptides,” Clin. Dermatol., vol. 27, no. 5, pp. 485–494, 2009, doi: 10.1016/j.clindermatol. 2009.05.013.
- Do Kim, E., Kim, E., Lee, JH. and Hyun, CK. “Gly-Ala-Gly-Val-Gly-Tyr, a novel synthetic peptide, improves glucose transport and exerts beneficial lipid metabolic effects in 3T3-L1 adipoctyes,” Eur. J. Pharmacol., vol. 650, no. 1, pp. 479–485, 2011, doi: 10.1016/j.ejphar. 2010.10.006.
- Yeh, WC., Cao, Z., Classon, M., and McKnight, SL., “Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins,” Genes Dev., vol. 9, no. 2, pp. 168–181, 1995, doi: 10.1101/gad.9.2.168.
- Rocha-Gomes,A., Escobar, A., . Soares,JS., Alves, A., Silva, D. and Riul, TR. “Chemical composition and hypocholesterolemic effect of milk kefir and water kefir in Wistar rats Composição química e efeito hipocolesterolêmico do kefir de leite e do kefir de água em ratos Wistar,” Rev. Nutr., vol. 31, no. 2, pp. 137–145, 2018, [Online]. Available: http://dx.doi.org/10.1590/1678-98652018000200001.
- Coelho, M., Oliveira,T. and Fernandes, R. “Biochemistry of adipose tissue: An endocrine organ,” Arch. Med. Sci., vol. 9, no. 2, pp. 191–200, 2013, doi: 10.5114/aoms. 2013.33181.
- Maestri, E., Marmiroli,M. and Marmiroli,N. “Bioactive peptides in plant-derived foodstuffs,” J. Proteomics, vol. 147, pp. 140–155, 2016, doi: 10.1016/j.jprot.2016.03.048.
- Ray. TB., and Black,CC., “ Characterization of Phosphoenolpyruvate Carboxykinase from Panicum maximum ,” Plant Physiol., vol. 58, no. 5, pp. 603–607, 1976, doi: 10.1104/pp.58.5.603.
- Li,. R,. et al., “Nutritional regulation of pyruvate kinase and phospho enolpyruvate carboxykinase at the enzymatic and molecular levels in cobia Rachycentron canadum,” Fish Physiol. Biochem., vol. 45, no. 3, pp. 1015–1028, 2019, doi: 10.1007/ s10695-019-00612-x.
- Méndez-Lucas M., et al., “PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis,” J. Hepatol., vol. 59, no. 1, pp. 105–113, 2013, doi: 10.1016/j.jhep.2013.02.020.
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License