Effects of Sacha Inchi Tempeh on Oxidative Stress in Rats with Metabolic Syndrome
Keywords:
Metabolic Syndrome, Sacha Inchi, Oxidative Stress, Tempeh, Total AntioxidantAbstract
Metabolic syndrome is a condition caused by metabolic disorders such as overweight, obesity, lack of physical activity, and genetic factors. Increased ROS production in metabolic syndrome causes oxidative stress characterized by decreased antioxidant capacity, increased MDA, and decreased SOD enzymes. Sacha inchi has a high ALA content that can increase omega-3 levels, tocopherols, and antioxidants that can help protect liver tissue from damage caused by oxidative stress in metabolic syndrome.The purpose of this study was to look at how sacha inchi tempeh affected the levels of malondialdehyde, superoxide dismutase enzyme, and overall antioxidant capacity in rats with metabolic syndrome brought on by a diet high in fat and fructose. The method used in the research is an experiment with a pre-and post-control group design on Wistar strain white rats with metabolic syndrome induced by HFFD, with the intervention of sacha inchi tempe (0.9 g; 1.8 g; 3.6 g) for 5 weeks (35 days). The results of the study with paired T-tests were that there was a significant difference in TAC levels before and after the intervention in the intervention group with a p-value of <0.05 compared to the healthy group. MDA and SOD enzyme levels in rat liver tissue also were significant improvement with a p-value of <0.05. When compared to simvastatin medication therapy, sacha inchi tempeh at a dose of 3.6 g had the best results. Therefore, it is established that sacha inchi tempeh is beneficial as a nutraceutical meal in reducing oxidative stress in individuals suffering from metabolic syndrome.
References
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease. 2017;11(8): 215–225. https://doi.org/10.1177/1753944717711379.
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metabolism. 2011;14(5): 575–585. https://doi.org/10.1016/j.cmet.2011.07.015.
Mostafa Abd El-Aal HAH. Lipid Peroxidation End-Products as a Key of Oxidative Stress: Effect of Antioxidant on Their Production and Transfer of Free Radicals. In: Lipid Peroxidation. InTech; 2012. p. 63–88. https://doi.org/10.5772/45944.
Avelar TMT, Storch AS, Castro LA, Azevedo GVMM, Ferraz L, Lopes PF. Oxidative stress in the pathophysiology of metabolic syndrome: Which mechanisms are involved? Jornal Brasileiro de Patologia e Medicina Laboratorial. 2015;51(4): 231–239. https://doi.org/10.5935/1676-2444.20150039.
Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, et al. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukotrienes and Essential Fatty Acids. 2016;111: 25–35. https://doi.org/10.1016/j.plefa.2016.02.002.
Cárdenas DM, Rave LJG, Soto JA. Biological activity of sacha inchi (Plukenetia volubilis linneo) and potential uses in human health: A review. Food Technology and Biotechnology. 2021;59(3): 253–266. https://doi.org/10.17113/ftb.59.03.21.6683.
Hassan AA, Rasmy NM, El-Gharably AMA, El-Megied AAA, Gadalla SMM. Hypocholesterolemic Effects of Soybean and Sweet Lupine Tempeh in Hypercholesterolemic Rats. International Journal of Fermented Foods. 2014;3(1): 11. https://doi.org/10.5958/2321-712x.2014.01307.6.
Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. International Journal of Medical Sciences. 2016;13(1): 25–38. https://doi.org/10.7150/ijms.13800.
Susantiningsih T, Biokimia B, Kedokteran F. Obesitas dan Stres Oksidatif. JuKe Unila. 2015;6(9): 89–93. https://www.bing.com/ck/a?!&&p=027301cda1a0f58bJmltdHM9MTcxNjI0OTYwMCZpZ3VpZD0wM2ZmYmViNi04YmE0LTY5MDMtM2NjMS1hZDU5OGFmMjY4ZWImaW5zaWQ9NTE5NA&ptn=3&ver=2&hsh=3&fclid=03ffbeb6-8ba4-6903-3cc1-ad598af268eb&psq=Susantiningsih+T%2c+Biokimia+B%2c+Kedokteran+F.+Obesitas+dan+Stres+Oksidatif.+JuKe+Unila.+2015%3b6(9)%3a+89%e2%80%9393.&u=a1aHR0cHM6Ly9qdWtlLmtlZG9rdGVyYW4udW5pbGEuYWMuaWQvaW5kZXgucGhwL2p1a2UvYXJ0aWNsZS92aWV3LzYzOQ&ntb=1
Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. Journal of Chromatography B. 2005;827(1): 76–82. https://doi.org/10.1016/j.jchromb.2005.06.035.
Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of Oxidative Stress during Diabetes Mellitus. Journal of Biomarkers. 2013;2013: 1–8. https://doi.org/10.1155/2013/378790.
Rizzo A, Roscino M, Binetti F, Sciorsci R. Roles of Reactive Oxygen Species in Female Reproduction. Reproduction in Domestic Animals. 2012;47(2): 344–352. https://doi.org/10.1111/j.1439-0531.2011.01891.x.
Rojanaverawong W, Wongmanee N, Hanchang W. Sacha Inchi (Plukenetia volubilis L.) Oil Improves Hepatic Insulin Sensitivity and Glucose Metabolism through Insulin Signaling Pathway in a Rat Model of Type 2 Diabetes. Preventive Nutrition and Food Science. 2023;28(1): 30–42. https://doi.org/10.3746/pnf.2023.28.1.30.
Salam DA. Potensi Kacang Sacha Inchi (Plukenetia volubilis. L) sebagai Bahan Baku Pembuatan Tempe Tinggi Asam Lemak Tak Jenuh Ganda. [skripsi] Universitas Diponegoro. [Semarang]: Universitas Diponegoro; 2023.
Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, et al. Novel n-3 Fatty Acid Oxidation Products Activate Nrf2 by Destabilizing the Association between Keap1 and Cullin3. Journal of Biological Chemistry. 2007;282(4): 2529–2537. https://doi.org/10.1074/jbc.M607622200.
Mai HC, Nguyen DC, Thuong Nhan NP, Bach LG. Physico-Chemical Properties of Sacha Inchi (Plukenetia volubilis L.) Seed Oil from Vietnam. Asian Journal of Chemistry. 2020;32(2): 335–338. https://doi.org/10.14233/ajchem.2020.22233.
Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, et al. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2016;111: 25–35. https://doi.org/10.1016/j.plefa.2016.02.002.
Toor BS, Kaur A, Sahota PP, Kaur J. Antioxidant Potential, Antinutrients, Mineral Composition and FTIR Spectra of Legumes Fermented with Rhizopus oligosporus. Food Technology and Biotechnology. 2021;59(4): 530–542. https://doi.org/10.17113/ftb.59.04.21.7319.
Souza AHP de, Gohara AK, Rodrigues ÂC, Souza NE de, Visentainer JV, Matsushita M. Sacha inchi as potential source of essential fatty acids and tocopherols: multivariate study of nut and shell. Acta Scientiarum. Technology. 2013;35(4): 757–763. https://doi.org/10.4025/actascitechnol.v35i4.19193.
Suwarno M, Astawan M, Wresdiyati T, Widowati S, Bintari SH, Mursyid. Evaluasi keamanan tempe dari kedelai transgenik melalui uji subkronis pada tikus. Jurnal Veteriner. 2014;15(3). https://api.semanticscholar.org/CorpusID:83853044
Su H, Chen W, Lu J, Chao H, Liang Y, Haruka S, et al. The effects of using Tempeh as a supplement for type 2 diabetes. Food Science & Nutrition. 2023;11(6): 3339–3347. https://doi.org/10.1002/fsn3.3319.
Ramos-Escudero F, Muñoz AM, Alvarado-Ortíz C, Alvarado Á, Yáñez JA. Purple Corn ( Zea mays L.) Phenolic Compounds Profile and Its Assessment as an Agent Against Oxidative Stress in Isolated Mouse Organs. Journal of Medicinal Food. 2012;15(2): 206–215. https://doi.org/10.1089/jmf.2010.0342.
Al-Mamary M, Al-Meeri AM, Al-Habori M. Antioxidant activities and total phenolics of different types of honey. Nutrition Research. 2002;22: 1041–1047. https://api.semanticscholar.org/CorpusID:85598502
Elsayed Azab A, Omar Albasha M. Hepatoprotective Effect of Some Medicinal Plants and Herbs against Hepatic Disorders Induced by Hepatotoxic Agents. Journal of Biotechnology and Bioengineering. 2018;2(1): 8–20. https://doi.org/10.22259/2637-5362.0201002.
Huang YC, Wu BH, Chu YL, Chang WC, Wu MC. Effects of Tempeh Fermentation with Lactobacillus plantarum and Rhizopus oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats. Nutrients. 2018;10(9): 1143. https://doi.org/10.3390/nu10091143.
Li C, Xu T, Liu XW, Wang X, Xia T. The expression of β-glucosidase during natto fermentation increased the active isoflavone content. Food Bioscience. 2021;43: 101286. https://doi.org/10.1016/j.fbio.2021.101286.
Amanat S, Eftekhari MH, Fararouei M, Bagheri Lankarani K, Massoumi SJ. Genistein supplementation improves insulin resistance and inflammatory state in non-alcoholic fatty liver patients: A randomized, controlled trial. Clinical Nutrition. 2018;37(4): 1210–1215. https://doi.org/10.1016/j.clnu.2017.05.028.
Liu Y, Li J, Wang T, Wang Y, Zhao L, Fang Y. The effect of genistein on glucose control and insulin sensitivity in postmenopausal women: A meta-analysis. Maturitas. 2017;97: 44–52. https://doi.org/10.1016/j.maturitas.2016.12.004.
Astuti M, Meliala A, Dalais FS, Wahlqvist ML. Tempe, a nutritious and healthy food from Indonesia. Asia Pacific Journal of Clinical Nutrition. 2000;9(4): 322–325. https://doi.org/10.1046/j.1440-6047.2000.00176.x.
Li P, Huang J, Xiao N, Cai X, Yang Y, Deng J, et al. Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food & Function. 2020;11(7): 5827–5841. https://doi.org/10.1039/D0FO01178A.
Ambulay JP, Rojas PA, Timoteo OS, Barreto T V., Colarossi A. Effect of the emulsion of Sacha Inchi (Plukenetia huayabambana) oil on oxidative stress and inflammation in rats induced to obesity. Journal of Functional Foods. 2020;64: 103631. https://doi.org/10.1016/j.jff.2019.103631.
de Assis AM, Rech A, Longoni A, Rotta LN, Denardin CC, Pasquali MA, et al. Ω3-Polyunsaturated fatty acids prevent lipoperoxidation, modulate antioxidant enzymes, and reduce lipid content but do not alter glycogen metabolism in the livers of diabetic rats fed on a high fat thermolyzed diet. Molecular and Cellular Biochemistry. 2012;361(1–2): 151–160. https://doi.org/10.1007/s11010-011-1099-4.
Chirinos R, Pedreschi R, Domínguez G, Campos D. Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chemistry. 2015;173: 1203–1206. https://doi.org/10.1016/j.foodchem.2014.10.120.
Domínguez C, Ruiz E, Gussinye M, Carrascosa A. Oxidative Stress at Onset and in Early Stages of Type 1 Diabetes in Children and Adolescents. Diabetes Care. 1998;21(10): 1736–1742. https://doi.org/10.2337/diacare.21.10.1736.
Rahmawati A. Mekanisme Terjadinya Inflamasi Dan Stres Oksidatif Pada Obesitas. el–Hayah. 2014;5(1): 1. https://doi.org/10.18860/elha.v5i1.3034.
Rojanaverawong W, Wongmanee N, Hanchang W. Sacha Inchi (Plukenetia volubilis L.) Oil Improves Hepatic Insulin Sensitivity and Glucose Metabolism through Insulin Signaling Pathway in a Rat Model of Type 2 Diabetes. Preventive Nutrition and Food Science. 2023;28(1): 30–42. https://doi.org/10.3746/pnf.2023.28.1.30.
Adeyemi WJ, Olayaki LA. Synergistic and non-synergistic effects of salmon calcitonin and omega - 3 fatty acids on antioxidant, anti-inflammatory, and haematological indices in diabetic rats. Biomedicine & Pharmacotherapy. 2018;99: 867–875. https://doi.org/10.1016/j.biopha.2018.01.085.
Harun I, Susanto H, Rosidi A. The tempe giving decrease malondialdehyde [MDA] level and increase the activities of superoxide dismutase enzyme [SOD] on rats with high physical activities. J. Gizi Pangan. 2017;12(3): 211–216. http://journal.ipb.ac.id/index.php/jgizipangan
Chirinos R, Zuloeta G, Pedreschi R, Mignolet E, Larondelle Y, Campos D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry. 2013;141(3): 1732–1739. https://doi.org/10.1016/j.foodchem.2013.04.078.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License