Pengaruh Gula Merah Tebu terhadap Laktat Darah dan Glikogen Hati pada Tikus dengan Olahraga Renang

Authors

  • Ameliora Dwi Astani Universitas Diponegoro
  • Suroto Universitas Diponegoro
  • Etika Ratna Noer Universitas Diponegoro

DOI:

https://doi.org/10.21776/ub.ijhn.2022.009.02.3

Keywords:

gula merah tebu, glikogen hati, laktat darah, renang, suplementasi karbohidrat

Abstract

Kelelahan dalam olahraga dapat dipengaruhi oleh ketersediaan substrat energi. Ketersediaan energi yang rendah selama latihan dapat mempengaruhi metabolisme glikogenolisis hati dan produksi laktat di jaringan. Manfaat suplementasi karbohidrat sebelum olahraga diketahui dapat mencegah penipisan glikogen hati dan meningkatkan oksidasi laktat. Penelitian ini bertujuan untuk menyelidiki pengaruh tebu pada glikogen hati dan laktat darah. Penelitian ini menggunakan 36 ekor tikus Sprague Dawley berumur 8 minggu. Hewan dibagi menjadi 4 kelompok yaitu kelompok kontrol menetap dengan tebu merah (Sedentairl), tebu + renang (GMT), glukosa + renang (Glu), dan aquades + renang (Aqu). Semua kelompok diberi makan glukosa atau sukrosa 0,3 g/100 g berat badan tikus yang dilarutkan dalam 1 ml aquades/100 g berat badan tikus, 10 menit sebelum latihan. Suplemen tebu coklat yang diberikan pada kelompok GMT menghasilkan glikogen hati pasca-intervensi yang lebih tinggi (5,56 mg/dl) dibandingkan kelompok latihan lainnya (p=0,000). Selain itu, peningkatan laktat darah juga ditemukan 50% lebih rendah dibandingkan kelompok Glu dan Aqu (p=0,000). Dapat disimpulkan bahwa penggunaan suplementasi tebu merah sebagai makanan sebelum latihan dapat mempengaruhi pemecahan glikogen hati dan pergantian laktat selama latihan.

 

Author Biography

Etika Ratna Noer, Universitas Diponegoro

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro

References

Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise ? Pre-Exercise Nutrition and the Response to Endurance Exercise : Current Prospective and Future Directions. Nutrients. 2020;12(3473):1–23.

Lieberman M, Peet A. Marks’ Basic Medical Biochemistry : A clinical Approach. 5th ed. Philadelphia: Wolters Kluwer; 2018. 1–2327 p.

Gonzalez JT, Fuchs CJ, Betts JA, Loon LJC Van. Liver glycogen metabolism during and after prolonged endurance-type exercise. American Journal of Physiology - Endocrinology and Metabolism. 2016;311:543–53.

Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. Journal of Physiology. 2013;591(18):4405–13.

Ferreira GA, Felippe LC, Silva RLS, Bertuzzi R, De Oliveira FR, Pires FO, et al. Effect of pre-exercise carbohydrate availability on fat oxidation and energy expenditure after a high-intensity exercise. Brazilian Journal of Medical and Biological Research. 2018;51(5):1–8.

Khong TK, Selvanayagam VS, Hamzah SH, Yusof A. Effect of quantity and quality of pre-exercise carbohydrate meals on central fatigue. Journal of Applied Physiology. 2018;125(4):1021–9.

Rowlands DS, Houltham S, Musa-Veloso K, Brown F, Paulionis L, Bailey D. Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Medicine [Internet]. 2015;45(11):1561–76. Available from: https://doi.org/10.1007/s40279-015-0381-0

Aznar S, González-gross M, Group S. Biomarkers of physical activity and exercise. Nutricion Hospitalaria. 2015;31:237–44.

Rosset R, Egli L, Lecoultre V. Glucose – fructose ingestion and exercise performance : The gastrointestinal tract and beyond. European Journal of Sport Science. 2017;1–12.

Fuchs CJ, Gonzalez JT, van Loon LJC. Fructose co-ingestion to increase carbohydrate availability in athletes. Journal of Physiology. 2019;597(14):3549–60.

Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell Metabolism [Internet]. 2018;27(4):757–85. Available from: https://doi.org/10.1016/j.cmet.2018.03.008

Singh A, Lal UR, Mukhtar HM, Singh PS, Shah G. Phytochemical profile of sugarcane and its potential health aspects. Phamacogosy Reviews. 2015;9(17).

Arif S, Batool A, Nazir W, Khan RS, Khalid N. Physiochemical Characteristics Nutritional Properties and Health Benefits of Sugarcane Juice [Internet]. Non-Alcoholic Beverages. Elsevier Inc.; 2019. 227–257 p. Available from: https://doi.org/10.1016/B978-0-12-815270-6.00008-6

Kalpana K, Rishi Lal P, Lakshmi Kusuma D, Lal Khanna G. The effects of ingestion of sugarcane juice and commercial sports drinks on cycling performance of athletes in comparison to plain water. Asian Journal of Sports Medicine. 2013;4(3):181–9.

Eggleston G. Positive Aspects of Cane Sugar and Sugar Cane Derived Products in Food and Nutrition. Journal of Agricultural and Food Chemistry. 2018;66(16):4007–12.

Wan J, Qin Z, Wang P, Sun Y, Liu X. Muscle fatigue : general understanding and treatment. Experimental & Molecular Medicine [Internet]. 2017;49(10):1–11. Available from: http://dx.doi.org/10.1038/emm.2017.194

Singh J. Manufacturing Jaggery, a Product of Sugarcane, As Health Food. Agrotechnology. 2013;01(S11):10–2.

Azlan A, Khoo HE, Sajak AAB, Aizan Abdul Kadir NA, Yusof BNM, Mahmood Z, et al. Antioxidant activity, nutritional and physicochemical characteristics, and toxicity of minimally refined brown sugar and other sugars. Food Science and Nutrition. 2020;8(9):5048–62.

Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M. Preexercise ingestion of carbohydrate plus whey protein hydrolysates attenuates skeletal muscle glycogen depletion during exercise in rats. Nutrition [Internet]. 2011;27(7–8):833–7. Available from: http://dx.doi.org/10.1016/j.nut.2010.08.021

Sampaio-Barros MM, Farias-Silva E, Grassi-Kassisse DM, Spadari-Bratfisch RC. Effect of swimming session duration and repetition on metabolic markers in rats. Stress. 2003;6(2):127–32.

Kokubun E, Hirabara SM, Fiamoncini J, Curi R, Haebisch H. Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats. Cell Biochemistry and Function. 2009;27(7):488–95.

Gobatto CA, De Mello MAR, Sibuya CY, De Azevedo JRM, Dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology. 2001;130(1):21–7.

Leander P, Månsson S, Pettersson G. Glycogen Content in Rat Liver. Acta Radiologica [Internet]. 2000;41(1):92–6. Available from: http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0455.2000.041001092.x/abstract%5Cnhttp://onlinelibrary.wiley.com/store/10.1034/j.1600-0455.2000.041001092.x/asset/j.1600-0455.2000.041001092.x.pdf?v=1&t=i2ftbcm2&s=3fd679c1cc8258556fed5b9c3ec642a203e32e5c

Aird TP, Davies RW, Carson BP. Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: A systematic review and meta-analysis. Scandinavian Journal of Medicine and Science in Sports. 2018;28(5):1476–93.

Ormsbee MJ, Bach CW, Baur DA. Pre-exercise nutrition: The role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients. 2014;6(5):1782–808.

Wilson PB. Multiple Transportable Carbohydrate During Exercise : Current Limitations and Directions for Future Research. The Journal of Strength and Contioning Research. 2015;29(7):2056–70.

Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutrition Reviews. 2018;76(4):243–59.

Edinburgh RM, Koumanov F, Gonzalez JT. Impact of pre-exercise feeding status on metabolic adaptations to endurance-type exercise training. Journal of Physiology. 2021;1–12.

King AJ, Hara JPO, Arjomandkhah NC, Rowe J, Morrison DJ, Preston T, et al. Liver and muscle glycogen oxidation and performance with dose variation of glucose – fructose ingestion during prolonged ( 3 h ) exercise. European Journal of Applied Physiology [Internet]. 2019;119(5):1157–69. Available from: http://dx.doi.org/10.1007/s00421-019-04106-9

King AJ, Hara JPO, Morrison DJ, Preston T, King RFGJ. Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiological Reports. 2018;6(1):1–17.

Solichah KM. Pengaruh Suplementasi Gula Merah Tebu terhadap Kadar Glukosa Darah dan Glikogen Otot Tikus Sprague Dawley dengan Perlakuan Olahraga Renang. Universitas Diponegoro; 2021.

Ji J, Yang X, Flavel M, Shields ZP, Kitchen B. Antioxidant and Anti-Diabetic Functions of a Polyphenol-Rich Sugarcane Extract. Journal of the American College of Nutrition [Internet]. 2019;0(0):1–11. Available from: https://doi.org/10.1080/07315724.2019.1587323

Ali SE, Gedaily RA El, Mocan A, Farag MA, El-seedi HR. Sugarcane ( Saccharum officinarum Linn .) Juice and Its Product Molasses via a Multiplex Metabolomics Approach. Molecules. 2019;24(934):1–21.

Hewa Pathirana HPDT, Wijesekara I, Yalegama LLWC, Jayasinghe MA, Waidyarathne KP. Glycemic Responses by Coconut (Cocos nucifera) Jaggery and Cane Sugar (Saccharum officinarum): A Comparative Study. Asian Food Science Journal. 2021;20(12):41–8.

Iqbal Amir, Kamran H, Khalid S, Jabeen S, Aslam M. Glycemic Response of Natural Sweeteners like Sugarcane Juice, Honey and Jaggery in Healthy Individuals. EAS Journal of Humanities and Cultural Studies. 2020;2(5):278–81.

Trommelen J, Fuchs CJ, Beelen M, Lenaerts K, Jeukendrup AE, Cermak NM, et al. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise. Nutrients. 2017;9(2):1–12.

Baur DA, Saunders MJ. Carbohydrate supplementation : a critical review of recent innovations. European Journal of Applied Physiology [Internet]. 2021;121(1):23–66. Available from: https://doi.org/10.1007/s00421-020-04534-y

Wallis GA, Wittekind A. Is there a specific role for sucrose in sports and exercise performance? International Journal of Sport Nutrition and Exercise Metabolism. 2013;23(6):571–83.

Hall MM, Rajasekaran S, Thomsen TW, Peterson AR. Lactate: Friend or Foe. PM and R [Internet]. 2016;8(3):S8–15. Available from: http://dx.doi.org/10.1016/j.pmrj.2015.10.018

Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding [Internet]. Vol. 118, European Journal of Applied Physiology. Springer Berlin Heidelberg; 2018. 691–728 p. Available from: http://dx.doi.org/10.1007/s00421-017-3795-6

Khanna GL, Manna I. Supplementary effect of carbohydrate-electrolyte drink on sports performance, lactate removal & cardiovascular response of athletes. Indian Journal of Medical Research. 2005;121(5):665–9.

Rosset R, Lecoultre V, Egli L, Cros J, Rey V, Stefanoni N, et al. Endurance training with or without Glucose-Fructose ingestion: Effects on lactate metabolism assessed in a randomized clinical trial on sedentary men. Nutrients. 2017;9(4):1–15.

Hu JR, Wu Y, Sacks FM, Appel LJ, Miller ER, Young JH, et al. Effects of carbohydrate quality and amount on plasma lactate: Results from the OmniCarb trial. BMJ Open Diabetes Research and Care. 2020;8(1):1–7.

Tappy L, Rosset R. Fructose Metabolism from a Functional Perspective : Implications for Athletes. Sports Medicine. 2017;47(s1):23–32.

Kitaoka Y, Endo Y, Mukai K, Aida H, Hiraga A, Hatta H. Muscle glycogen breakdown and lactate metabolism during intensive exercise in Thoroughbred horses. The Journal of Physical Fitness and Sports Medicine. 2014;3(4):451–6.

Downloads

Published

2022-12-30

Issue

Section

Articles